An Adaptive Hybrid Multi-level Intelligent Intrusion Detection System for Network Security P. Ananthi and P. Balasubramanie Kongu Engineering College, India

نویسنده

  • P. Ananthi
چکیده

Intrusion Detection System (IDS) plays a vital factor in providing security to the networks through detecting malicious activities. Due to the extensive advancements in the computer networking, IDS has become an active area of research to determine various types of attacks in the networks. A large number of intrusion detection approaches are available in the literature using several traditional statistical and data mining approaches. Data mining techniques in IDS observed to provide significant results. Data mining approaches for misuse and anomalybased intrusion detection generally include supervised, unsupervised and outlier approaches. It is important that the efficiency and potential of IDS be updated based on the criteria of new attacks. This study proposes a novel Adaptive Hybrid Multi-level Intelligent IDS (AHMIIDS) system which is the combined version of anomaly and misuse detection techniques. The anomaly detection is based on Bayesian Networks and then the misuse detection is performed using Adaptive Neuro Fuzzy Inference System (ANFIS). The outputs of both anomaly detection and misuse detection modules are applied to Decision Table Majority (DTM) to perform the final decision making. A rule-base approach is used in this system. It is observed from the results that the proposed AHMIIDS performs better than other conventional hybrid IDS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Hybrid Multi-level Intelligent Intrusion Detection System for Network Security

Intrusion Detection System (IDS) plays a vital factor in providing security to the networks through detecting malicious activities. Due to the extensive advancements in the computer networking, IDS has become an active area of research to determine various types of attacks in the networks. A large number of intrusion detection approaches are available in the literature using several traditional...

متن کامل

MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security

Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...

متن کامل

A Fuzzy Neural Network and Multiple Kernel Fuzzy C-means Algorithm for Secured Intrusion Detection System

An Intrusion Detection System (IDS) is a security layer used to detect constant intrusive behavior in information systems. Many intrusion detection systems have been proposed based on the various data mining approaches such as decision tree, clustering, etc. Although the intrusion detection system is efficient way to find the attacks in the system, existing ones have some disadvantages which af...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016